UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 4th Semester [Special] Examination, 2023

GE2-P2-MATHEMATICS

(Revised Syllabus 2023)
Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks.

The question paper contains MATHGE4-II, MATHGE4-III, MATHGE4-V. The candidates are required to answer any one from the three courses.

Candidates should mention it clearly on the Answer Book.

MATHGE4-II

Algebra

GROUP-A

1. Answer any four questions:
(a) If n is a positive integer, show that $\left(1+\frac{1}{n+1}\right)^{n+1}>\left(1+\frac{1}{n}\right)^{n}$.
(b) Show that the sum of the squares of all values of $(\sqrt{3}+i)^{3 / 7}$ is 0 .3
(c) Find the remainder when $1!+2!+3!+\cdots \cdots+50$! is divided by 15 .
(d) Show that if d is an eigen value of a non-singular matrix A, then λ^{-1} is an eigen value of A^{-1}.
(e) If α, β, γ be the roots of $x^{3}+p x^{2}+q x+r=0$, find the values of (i) $\sum \alpha^{2} \beta$,
(ii) $\sum \frac{1}{\alpha \beta}$.
(f) Obtain a row echelon matrix which is row equivalent to $\left(\begin{array}{rrrr}1 & 2 & 1 & -3 \\ 2 & 4 & 3 & 1 \\ 3 & 6 & 4 & -1\end{array}\right)$.

GROUP-B

Answer any four questions

2. Show that $\tan 4 \theta=\frac{4 \tan \theta-4 \tan ^{3} \theta}{1-6 \tan ^{2} \theta+\tan 4 \theta}$.
3. Solve the equation $x^{4}-4 x^{3}-4 x^{2}-4 x-5=0$, whose two roots α, β satisfies $2 \alpha+\beta=3$.

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHGE4/Revised \& Old/2023

4. Find the real value of λ such that the following system has a non-zero solution:

$$
\begin{aligned}
& x+2 y+3 z=\lambda x \\
& 3 x+y+2 z=\lambda y \\
& 2 x+3 y+z=\lambda z
\end{aligned}
$$

5. Find all eigen values and corresponding eigen vectors of the matrix

$$
A=\left(\begin{array}{ccc}
3 & 10 & 5 \\
-2 & -3 & -4 \\
3 & 5 & 7
\end{array}\right)
$$

6. Use division algorithm to prove that the square of odd integers is of the form $8 k+1$, where k is an integer.
7. Verify Cayley-Hamilton theorem for the matrix $A=\left(\begin{array}{ccc}0 & 0 & 1 \\ 3 & 1 & 0 \\ -2 & 1 & 4\end{array}\right)$, and hence find A^{-1}.

GROUP-C

Answer any two questions

8. (a) If $d=\operatorname{gcd}(a, m)$, then show that $a x \equiv a y(\bmod m)$ iff $x \equiv y\left(\bmod \frac{m}{d}\right)$.
(b) Solve by Ferrari's method $x^{4}-6 x^{2}+16 x-15=0$.
9. (a) Prove that the product of any m consecutive integers is divisible by m.
(b) If R and S be equivalence relations on a set A, prove that R^{-1} is an equivalence relation on A and $R \cap S$ is also an equivalence relation on A.
10.(a) Obtain the fully reduced normal form of the matrix $\left(\begin{array}{llll}1 & 0 & 2 & 3 \\ 2 & 1 & 4 & 6 \\ 3 & 0 & 7 & 9 \\ 2 & 6 & 1 & 1\end{array}\right)$.
(b) Apply Descarte's rule of signs to find the nature of roots of $x^{7}+x^{5}-x^{3}=0$.
(c) Find two integers U and V satisfying $63 U+55 V=1$.
11.(a) If the roots of $x^{3}+2 x^{2}+3 x+1=0$ are α, β, γ, then find the equation whose roots are $\left(\frac{1}{\beta^{2}}+\frac{1}{\gamma^{2}}-\frac{1}{\alpha^{2}}\right),\left(\frac{1}{\gamma^{2}}+\frac{1}{\alpha^{2}}-\frac{1}{\beta^{2}}\right)$ and $\left(\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}-\frac{1}{\gamma^{2}}\right)$.
(b) If $\cos \alpha+\cos \beta+\cos \gamma=0=\sin \alpha+\sin \beta+\sin \gamma$, then prove that

$$
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=\frac{3}{2}
$$

MATHGE4-III

Differential Equation and Vector Calculus

GROUP-A

1. Answer any four questions from the following:
(a) Find $\frac{1}{(D+1)(D+2)^{2}}\left\{e^{-2 x}+e^{x} \cdot x+3 e^{-x}\right\}$.
(b) Locate and classify the singular points of equation

$$
x^{2}\left(x^{2}-4\right) \frac{d^{2} y}{d x^{2}}+3 x^{3} \frac{d y}{d x}+4 y=0
$$

(c) Show that $e^{3 x}, x e^{3 x}$ and $x^{2} e^{3 x}$ are the solutions of $\frac{d^{3} y}{d x^{3}}-9 \frac{d^{2} y}{d x^{2}}+27 \frac{d y}{d x}-27 y=0$. Are they linearly independent? Justify.
(d) Find the volume of the parallelopiped whose three concurrent sides are represented by the vectors: $\hat{i}+2 \hat{j}+3 \hat{k}, 3 \hat{i}+7 \hat{j}-4 \hat{k}, \hat{i}-5 \hat{j}+3 \hat{k}$.
(e) If ϕ is a harmonic function, show that $\operatorname{grad} \phi$ is a solenoidal vector field.
(f) If $\vec{a}, \vec{b}, \vec{c}$ be non-coplanar, prove that $\vec{a}+\vec{b}, \vec{b}+\vec{c}$ and $\vec{c}+\vec{a}$ are also noncoplanar.

GROUP-B

Answer any four questions from the following

2. Solve: $\frac{d x}{d t}+4 x+3 y=t$

$$
\begin{equation*}
\frac{d y}{d t}+2 x+5 y=e^{t} \tag{6}
\end{equation*}
$$

3. Solve: $\frac{d^{3} y}{d x^{3}}-5 \frac{d^{2} y}{d x^{2}}+8 \frac{d y}{d x}-4 y=e^{2 x}+e^{x}+3 e^{-x}$
4. Solve by method of variation of parameters $\frac{d^{3} y}{d x^{3}}+\frac{d y}{d x}=\operatorname{cosec} x$.
5. Solve the differential equation by reducing to normal form:

$$
\frac{d^{2} y}{d x^{2}}-\frac{2}{x} \frac{d y}{d x}+\left(a^{2}+\frac{2}{x^{2}}\right) y=0
$$

6. Show that the vector field $\vec{F}=\left(x^{2}-y z\right) \hat{i}+\left(y^{2}-z x\right) \hat{j}+\left(z^{2}-x y\right) \hat{k}$ is irrotational.

Find the scalar function $\phi(x, y, z)$ such that $\vec{\nabla} \phi=\vec{F}$.
7. Evaluate $\iint_{S} \vec{F} \cdot \hat{n} d S$
where $\vec{F}=4 x z \hat{i}-y^{2} \hat{j}+y z \hat{k}$ and S is the surface of the cube bounded by $x=0, x=1 ; y=0, y=1 ; z=0, z=1$.

GROUP-C

Answer any two questions from the following

8. (a) Solve: $\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=x^{2} e^{3 x}$
(b) Solve: $(5+2 x)^{2} \frac{d^{2} y}{d x^{2}}-6(5+2 x) \frac{d y}{d x}+8 y=8(5+2 x)^{2}$
9. (a) Solve by the method of undetermined coefficient $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+3 y=x^{3}+\sin x$.
(b) Find the general solution of $(1+x) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=(1+x)^{2}$ by the method of variation of parameters, it is given that $y=x$ and $y=e^{-x}$ are two linearly independent solutions of the corresponding homogeneous equation.
10.(a) Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}=x y \hat{i}+\left(x^{2}+y^{2}\right) \hat{j}$ and C is the x-axis from $x=2$ to $x=4$ and the straight line from $y=0$ to $y=12$.
(b) Find the work done in moving a particle in a force field $\vec{F}=3 x^{2} \hat{i}+(2 x z-y) \hat{j}+z \hat{k}$ along the line joining $(0,0,0)$ to $(2,1,3)$.
11.(a) A particle moves along a curve $x=2 t^{2}, y=t^{2}-4 t, z=3 t-5$, where t is the time. Find the component of its velocity and acceleration at $t=1$ in direction $\vec{a}=\hat{i}-3 \hat{j}+2 \hat{k}$.
(b) Solve: $\frac{d^{2} x}{d t^{2}}+4 x+y=t e^{3 t}$

$$
\begin{equation*}
\frac{d^{2} y}{d t^{2}}+y-2 x=\cos ^{2} t \tag{2}
\end{equation*}
$$

(c) Find $\frac{d \vec{A}}{d t} \times \frac{d^{2} \vec{A}}{d t^{2}}$, where $\vec{A}=t^{3} \hat{i}-\left(t^{2}-2\right) \hat{j}+\left(t^{3}-t\right) \hat{k}$.

MATHGE4-V

Numerical Methods

GROUP-A

1. Answer any four questions from the following:
(a) If $\sqrt{3}$ be represented by 1.732 , find relative error and percentage error.
(b) What is pivoting? State the sufficient condition of convergence of Gauss-Seidel iteration.
(c) What are the merits and demerits of Lagrange's interpolation formula?

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHGE4/Revised \& Old/2023

(d) Write down the order of convergence of
(i) Regula-Falsi method
(ii) Newton-Raphson method
(iii) Secant method.
(e) Show that $\Delta \log f(x)=\log \left\{1+\frac{\Delta f(x)}{f(x)}\right\}$.
(f) What is the geometrical meaning of Newton-Raphson method?

GROUP-B

Answer any four questions from the following
2. Using Lagrange's interpolation formula, find $f(6.60)$ from the following data:

x	6.54	6.58	6.59	6.61	6.64
$f(x)$	2.8156	2.8182	2.8189	2.8202	2.8222

3. Compute the values of the unknowns in the system of equation by Gauss-Jordan's matrix inversion method:

$$
\begin{aligned}
& 2 x_{1}-3 x_{2}+4 x_{3}=8 \\
& x_{1}+x_{2}+4 x_{3}=15 \\
& 3 x_{1}+4 x_{2}-x_{3}=8
\end{aligned}
$$

4. Evaluate $\int_{0}^{\pi / 2} \sqrt{\cos x} d x$ by Weddle's rule, correct upto three significant figures, taking six intervals.
5. Establish the Picard's iteration formula for $\frac{d y}{d x}=f(x, y), y\left(x_{0}\right)=y_{0}$.
6. Solve by Gauss-elimination method:

$$
\begin{aligned}
& x+3 y+2 z=5 \\
& 2 x-y+z=-1 \\
& x+2 y+3 z=2
\end{aligned}
$$

7. For any positive k, show that $\nabla^{k} y_{n}=\sum_{i=0}^{k}(-1)^{i}\binom{k}{i} y_{n-i}, \nabla$ being the backward difference operator.

GROUP-C

Answer any two questions from the following
8. (a) Find the number of multiplications and divison's for solving a system of n linear equations having n unknowns using Gauss-elimination method.
(b) What are partial and complete pivoting in Gauss-elimination method?
(c) Find the missing term in the following table:

x	16	18	20	22	24	26
$f(x)$	39	85	-	151	233	388

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHGE4/Revised \& Old/2023

9. (a) If $f(x)$ is a polynomial of degree 2 , prove that

$$
\int_{0}^{1} f(x) d x=\frac{1}{12}[5 f(0)+8 f(1)-f(2)]
$$

(b) Explain modified Euler's method, for solving first order differential equation of the form

$$
\frac{d y}{d x}=f(x, y) \quad, \quad y\left(x_{0}\right)=y_{0}
$$

10.(a) Compute the root of the equation $2 x-3 \sin x-5=0$ by Regula-Falsi Method correct upto three decimal places.
(b) Define the operator Δ, prove that $\Delta^{n}\left(\frac{1}{x}\right)=\frac{(-1)^{n} n \text { ! }}{x(x+1)(x+2) \cdots \cdots(x+n)}$.
11.(a) Evaluate $\int_{0.1}^{0.7}\left(e^{x}+2 x\right) d x$, by Simpson's $1 / 3^{\text {rd }}$ rule, taking $h=0.1$ and correct upto five decimal places.
(b) Evaluate $f(1.1)$ from the table below:

x	0	1	2	3	4	5
$f(x)$	0	3	8	15	24	35

'समानो मन्त्रः समितिः समानी'

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 4th Semester Examination, 2023

GE2-P2-MATHEMATICS

(Old Syllabus 2018)

The figures in the margin indicate full marks.

The question paper contains MATHGE4-I, MATHGE4-II, MATHGE4-III,
MATHGE4-IV \& MATHGE4-V. The candidates are required to answer any one from the five courses. Candidates should mention it clearly on the Answer Book.

MATHGE4-I

Calculus, Geonetry and Differential Equation
 GROUP-A

1. Answer any four questions from the following:
(a) Find the length of the curve, $x=t^{2}, y=\sin t-t \cos t, z=\cos t+t \sin t$ from $t=0$
to $t=\pi$.
(b) Find the asymptotes of the curve,

$$
x=\frac{t^{2}+1}{t^{2}-1} \quad, \quad y=\frac{t^{2}}{t-1}
$$

(c) Evaluate: $\lim _{x \rightarrow 0} \frac{x-\sin ^{-1} x}{\sin ^{3} x}$
(d) Show that the distance of a point (x, y) from the origin is an invariant under rotation of axes.
(e) Transform the equation $x^{3}=y^{2}(2 a-x)$ into the polar equation.
(f) Find the order and degree of the differential equation: $\left(\frac{d^{3} y}{d x^{3}}\right)^{2}=\sqrt{y+\left(\frac{d y}{d x}\right)^{3}}$

GROUP-B

Answer any four questions from the following

$6 \times 4=24$
2. If $\ln y=\tan ^{-1} x$, then show that

$$
\begin{equation*}
\left(1+x^{2}\right) y_{n+2}+(2 n x+2 x-1) y_{n+1}+n(n+1) y_{n}=0 \tag{6}
\end{equation*}
$$

3. Show that the curve $y\left(x^{2}+a^{2}\right)=a^{2} x$ has three points of inflexion lie on the line $x=4 y$.
4. If $I_{n}=\int_{0}^{1} x^{n} \tan ^{-1} x d x, n>2$, prove that $(n+1) I_{n}+(n-1) I_{n-2}=\frac{\pi}{2}-\frac{1}{n}$.
5. Find the volume of the solid of revolution obtained by revolving $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ about x-axis.
6. Solve the differential equation: $x \frac{d y}{d x}+y=y^{2} \log x$
7. Reduce the equation $x^{2}-5 x y+y^{2}+8 x-20 y+15=0$ to its canonical form and 6 show that it represents a hyperbola.

GROUP-C

Answer any two questions from the following

8. (a) Solve: $\left(x^{2} y-2 x y^{2}\right) d x-\left(x^{3}-3 x^{2} y\right) d y=0$.
(b) Obtain the differential equation corresponding to $(x-a)^{2}+(y-b)^{2}=9$, where a, b are arbitrary parameters.
(c) Solve: $x^{2} d y+\left(x y+y^{2}\right) d x=0$
9. (a) Show that the straight line $r \cos (\theta-\alpha)=p$ touches the conic $\frac{l}{r}=1+e \cos \theta$, if $(l \cos \alpha-e p)^{2}+l^{2} \sin ^{2} \alpha=p^{2}$.
(b) Find the equation of the sphere which passes through the points $(1,0,0),(0,1,0)$, $(0,0,1)$ and which touches the plane $2 x+2 y-z=15$.
10.(a) Find the equation of the cylinder, whose generators are parallel to the straight line $\frac{x}{-1}=\frac{y}{2}=\frac{z}{3}$ and whose guiding curve is $x^{2}+y^{2}=9, z=1$.
(b) Reduce the equation $x^{2}+y^{2}+z^{2}-2 x y-2 y z+2 z x+x-4 y+z+1=0$ to its canonical form and determine the nature of the quadric.
11.(a) A circle moves with its centre on the parabola $y^{2}=4 a x$ and always passes through the vertex of the parabola. Show that the envelope of the circle is the curve $x^{3}+y^{2}(x+2 a)=0$.
(b) Find the asymptotes of the curve $2 x^{3}+3 x^{2} y-3 x y^{2}-2 y^{3}+3 x^{2}-3 y^{2}+y-3=0$.

MATHGE4-II

Algebra

GROUP-A

1. Answer any four questions:
(a) If n is a positive integer, show that $\left(1+\frac{1}{n+1}\right)^{n+1}>\left(1+\frac{1}{n}\right)^{n}$.
(b) Show that the sum of the squares of all values of $(\sqrt{3}+i)^{3 / 7}$ is 0 .

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHGE4/Revised \& Old/2023

(c) Find the remainder when $1!+2!+3!+\cdots \cdots+50$! is divided by 15 .
(d) Show that if d is an eigen value of a non-singular matrix A, then λ^{-1} is an eigen value of A^{-1}.
(e) If α, β, γ be the roots of $x^{3}+p x^{2}+q x+r=0$, find the values of (i) $\sum \alpha^{2} \beta$,
(ii) $\sum \frac{1}{\alpha \beta}$.
(f) Obtain a row echelon matrix which is row equivalent to $\left(\begin{array}{rrrr}1 & 2 & 1 & -3 \\ 2 & 4 & 3 & 1 \\ 3 & 6 & 4 & -1\end{array}\right)$.

GROUP-B

Answer any four questions

2. Show that $\tan 4 \theta=\frac{4 \tan \theta-4 \tan ^{3} \theta}{1-6 \tan ^{2} \theta+\tan 4 \theta}$.
3. Solve the equation $x^{4}-4 x^{3}-4 x^{2}-4 x-5=0$, whose two roots α, β satisfies $2 \alpha+\beta=3$.
4. Find the real value of λ such that the following system has a non-zero solution:

$$
\begin{aligned}
& x+2 y+3 z=\lambda x \\
& 3 x+y+2 z=\lambda y \\
& 2 x+3 y+z=\lambda z
\end{aligned}
$$

5. Find all eigen values and corresponding eigen vectors of the matrix

$$
A=\left(\begin{array}{ccc}
3 & 10 & 5 \\
-2 & -3 & -4 \\
3 & 5 & 7
\end{array}\right)
$$

6. Use division algorithm to prove that the square of odd integers is of the form $8 k+1$, where k is an integer.
7. Verify Cayley-Hamilton theorem for the matrix $A=\left(\begin{array}{ccc}0 & 0 & 1 \\ 3 & 1 & 0 \\ -2 & 1 & 4\end{array}\right)$, and hence find A^{-1}.

GROUP-C

Answer any two questions

8. (a) If $d=\operatorname{gcd}(a, m)$, then show that $a x \equiv a y(\bmod m)$ iff $x \equiv y\left(\bmod \frac{m}{d}\right)$.
(b) Solve by Ferrari's method $x^{4}-6 x^{2}+16 x-15=0$.
9. (a) Prove that the product of any m consecutive integers is divisible by m.
(b) If R and S be equivalence relations on a set A, prove that R^{-1} is an equivalence relation on A and $R \cap S$ is also an equivalence relation on A.
10.(a) Obtain the fully reduced normal form of the matrix $\left(\begin{array}{llll}1 & 0 & 2 & 3 \\ 2 & 1 & 4 & 6 \\ 3 & 0 & 7 & 9 \\ 2 & 6 & 1 & 1\end{array}\right)$.
(b) Apply Descarte's rule of signs to find the nature of roots of $x^{7}+x^{5}-x^{3}=0$.
(c) Find two integers U and V satisfying $63 U+55 V=1$.
11.(a) If the roots of $x^{3}+2 x^{2}+3 x+1=0$ are α, β, γ, then find the equation whose roots are $\left(\frac{1}{\beta^{2}}+\frac{1}{\gamma^{2}}-\frac{1}{\alpha^{2}}\right),\left(\frac{1}{\gamma^{2}}+\frac{1}{\alpha^{2}}-\frac{1}{\beta^{2}}\right)$ and $\left(\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}-\frac{1}{\gamma^{2}}\right)$.
(b) If $\cos \alpha+\cos \beta+\cos \gamma=0=\sin \alpha+\sin \beta+\sin \gamma$, then prove that

$$
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=\frac{3}{2}
$$

MATHGE4-III

Differential Equation and Vector Calculus

GROUP-A

1. Answer any four questions from the following:
(a) Find $\frac{1}{(D+1)(D+2)^{2}}\left\{e^{-2 x}+e^{x} \cdot x+3 e^{-x}\right\}$.
(b) Locate and classify the singular points of equation

$$
x^{2}\left(x^{2}-4\right) \frac{d^{2} y}{d x^{2}}+3 x^{3} \frac{d y}{d x}+4 y=0
$$

(c) Show that $e^{3 x}, x e^{3 x}$ and $x^{2} e^{3 x}$ are the solutions of $\frac{d^{3} y}{d x^{3}}-9 \frac{d^{2} y}{d x^{2}}+27 \frac{d y}{d x}-27 y=0$. Are they linearly independent? Justify.
(d) Find the volume of the parallelopiped whose three concurrent sides are represented by the vectors: $\hat{i}+2 \hat{j}+3 \hat{k}, 3 \hat{i}+7 \hat{j}-4 \hat{k}, \hat{i}-5 \hat{j}+3 \hat{k}$.
(e) If ϕ is a harmonic function, show that $\operatorname{grad} \phi$ is a solenoidal vector field.
(f) If $\vec{a}, \vec{b}, \vec{c}$ be non-coplanar, prove that $\vec{a}+\vec{b}, \vec{b}+\vec{c}$ and $\vec{c}+\vec{a}$ are also noncoplanar.

GROUP-B

Answer any four questions from the following

2. Solve: $\frac{d x}{d t}+4 x+3 y=t$

$$
\frac{d y}{d t}+2 x+5 y=e^{t}
$$

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHGE4/Revised \& Old/2023

3. Solve: $\frac{d^{3} y}{d x^{3}}-5 \frac{d^{2} y}{d x^{2}}+8 \frac{d y}{d x}-4 y=e^{2 x}+e^{x}+3 e^{-x}$
4. Solve by method of variation of parameters $\frac{d^{3} y}{d x^{3}}+\frac{d y}{d x}=\operatorname{cosec} x$.
5. Solve the differential equation by reducing to normal form:

$$
\frac{d^{2} y}{d x^{2}}-\frac{2}{x} \frac{d y}{d x}+\left(a^{2}+\frac{2}{x^{2}}\right) y=0
$$

6. Show that the vector field $\vec{F}=\left(x^{2}-y z\right) \hat{i}+\left(y^{2}-z x\right) \hat{j}+\left(z^{2}-x y\right) \hat{k}$ is irrotational. Find the scalar function $\phi(x, y, z)$ such that $\vec{\nabla} \phi=\vec{F}$.
7. Evaluate $\iint_{S} \vec{F} \cdot \hat{n} d S$
where $\vec{F}=4 x z \hat{i}-y^{2} \hat{j}+y z \hat{k}$ and S is the surface of the cube bounded by $x=0, x=1 ; y=0, y=1 ; z=0, z=1$.

GROUP-C

Answer any two questions from the following

8. (a) Solve: $\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=x^{2} e^{3 x}$
(b) Solve: $(5+2 x)^{2} \frac{d^{2} y}{d x^{2}}-6(5+2 x) \frac{d y}{d x}+8 y=8(5+2 x)^{2}$
9. (a) Solve by the method of undetermined coefficient $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+3 y=x^{3}+\sin x$.
(b) Find the general solution of $(1+x) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=(1+x)^{2}$ by the method of variation of parameters, it is given that $y=x$ and $y=e^{-x}$ are two linearly independent solutions of the corresponding homogeneous equation.
10.(a) Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}=x y \hat{i}+\left(x^{2}+y^{2}\right) \hat{j}$ and C is the x-axis from $x=2$ to $x=4$ and the straight line from $y=0$ to $y=12$.
(b) Find the work done in moving a particle in a force field $\vec{F}=3 x^{2} \hat{i}+(2 x z-y) \hat{j}+z \hat{k}$ along the line joining $(0,0,0)$ to $(2,1,3)$.
11.(a) A particle moves along a curve $x=2 t^{2}, y=t^{2}-4 t, z=3 t-5$, where t is the time. Find the component of its velocity and acceleration at $t=1$ in direction $\vec{a}=\hat{i}-3 \hat{j}+2 \hat{k}$.
(b) Solve: $\frac{d^{2} x}{d t^{2}}+4 x+y=t e^{3 t}$

$$
\frac{d^{2} y}{d t^{2}}+y-2 x=\cos ^{2} t
$$

MATHGE4-IV

Group Theory

GROUP-A

Answer any four questions from the following

1. Prove that in a group $G,(a b)^{-1}=b^{-1} a^{-1}$ for all $a, b \in G$.
2. Show that the set $S=\left\{e, \rho_{1}, \rho_{2}, \rho_{3}\right\}$ of permutations forms an abelian group 3 with respect to 'multiplication of permutations', where

$$
e=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4
\end{array}\right), \quad \rho_{1}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{array}\right), \rho_{2}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 4 & 3
\end{array}\right), \rho_{3}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right)
$$

3. Find all elements of order 10 in the group $\left(\mathbb{Z}_{30},+_{30}\right)$.
4. Let G be a group and H, K be subgroups of G. Then show that $H \cap K$ is a 3 subgroup of G.
5. Find all cyclic subgroups of the group $V=\{e, a, b, c\}$, where V is the Klein's 3 4-group.
6. Let \mathbb{R}^{+}be the group of positive real numbers under multiplication and \mathbb{R} the group of all real numbers under addition. Then show that the map $\theta: \mathbb{R}^{+} \rightarrow \mathbb{R}$ such that $\theta(x)=\log _{e} x$ is an isomorphism.

GROUP-B

Answer any four questions from the following

7. Let G be a group and H be a subgroup of G. Prove that any two left cosets of H in G are either identical or they have no common element.
8. Prove that every group of prime order is cyclic.
9. Let H be a subgroup of a group G. Prove that the relation ρ defined on G by " $a \rho b$ if and only if $a^{-1} b \in H$ " for $a, b \in G$ is an equivalence relation on G.
10. Prove that a subgroup H of a group G is normal in G if and only if $g^{-1} h g \in H$ for all $h \in H, g \in G$.
11. Prove that a group homomorphism $f: G \rightarrow G^{\prime}$ is one-one if and only if $\operatorname{ker} f=\{e\}$.
12. Let $f: G \rightarrow G^{\prime}$ be a group homomorphism. Let $a \in G$ be such that $O(a)=n$ and $O(f(a))=m$. Prove that $O(f(a)) \mid O(a)$ and f is one-one iff $m=n$.

GROUP-C

Answer any two questions from the following

13.(a) Prove that a finite group of order n is cyclic if and only if there exists an element b in G such that $O(b)=n$.
(b) Let $G=\left\{1, \omega, \omega^{2},-1,-\omega,-\omega^{2}\right\}$ where $\omega=\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}$. Prove that G is a cyclic group under multiplication.
14.(a) Define centre of a group G. Prove that the centre $Z(G)$ of a group G is a normal subgroup of G.
(b) Let G and G^{\prime} be two groups and $\phi: G \rightarrow G^{\prime}$ be a homomorphism. Prove that $\phi(G)$ is a subgroup of G^{\prime}.
15.(a) Let H and K be subgroups of a group G. Then show that $H K$ is a subgroup of G if and only if $H K=K H$.
(b) Prove that a finite semigroup in which cancellation laws hold is a group.
16.(a) If H and K are finite subgroups of a group G, then show that

$$
O(H K)=\frac{O(H) O(K)}{O(H \cap K)}
$$

(b) Find all subgroups of the group \mathbb{Z} of integers.

MATHGE4-V

Numerical Methods

GROUP-A

1. Answer any four questions from the following:
(a) If $\sqrt{3}$ be represented by 1.732 , find relative error and percentage error.
(b) What is pivoting? State the sufficient condition of convergence of Gauss-Seidel iteration.
(c) What are the merits and demerits of Lagrange's interpolation formula?
(d) Write down the order of convergence of
(i) Regula-Falsi method
(ii) Newton-Raphson method
(iii) Secant method.
(e) Show that $\Delta \log f(x)=\log \left\{1+\frac{\Delta f(x)}{f(x)}\right\}$.
(f) What is the geometrical meaning of Newton-Raphson method?

GROUP-B

Answer any four questions from the following
2. Using Lagrange's interpolation formula, find $f(6.60)$ from the following data:

x	6.54	6.58	6.59	6.61	6.64
$f(x)$	2.8156	2.8182	2.8189	2.8202	2.8222

3. Compute the values of the unknowns in the system of equation by Gauss-Jordan's matrix inversion method:

$$
\begin{aligned}
& 2 x_{1}-3 x_{2}+4 x_{3}=8 \\
& x_{1}+x_{2}+4 x_{3}=15 \\
& 3 x_{1}+4 x_{2}-x_{3}=8
\end{aligned}
$$

4. Evaluate $\int_{0}^{\pi / 2} \sqrt{\cos x} d x$ by Weddle's rule, correct upto three significant figures, taking six intervals.
5. Establish the Picard's iteration formula for $\frac{d y}{d x}=f(x, y), y\left(x_{0}\right)=y_{0}$.
6. Solve by Gauss-elimination method:

$$
\begin{aligned}
& x+3 y+2 z=5 \\
& 2 x-y+z=-1 \\
& x+2 y+3 z=2
\end{aligned}
$$

7. For any positive k, show that $\nabla^{k} y_{n}=\sum_{i=0}^{k}(-1)^{i}\binom{k}{i} y_{n-i}, \nabla$ being the backward difference operator.

GROUP-C

Answer any two questions from the following
8. (a) Find the number of multiplications and divison's for solving a system of n linear equations having n unknowns using Gauss-elimination method.
(b) What are partial and complete pivoting in Gauss-elimination method?
(c) Find the missing term in the following table:

x	16	18	20	22	24	26
$f(x)$	39	85	-	151	233	388

9. (a) If $f(x)$ is a polynomial of degree 2 , prove that

$$
\int_{0}^{1} f(x) d x=\frac{1}{12}[5 f(0)+8 f(1)-f(2)]
$$

(b) Explain modified Euler's method, for solving first order differential equation of the form

$$
\frac{d y}{d x}=f(x, y) \quad, \quad y\left(x_{0}\right)=y_{0}
$$

10.(a) Compute the root of the equation $2 x-3 \sin x-5=0$ by Regula-Falsi Method correct upto three decimal places.
(b) Define the operator Δ, prove that $\Delta^{n}\left(\frac{1}{x}\right)=\frac{(-1)^{n} n!}{x(x+1)(x+2) \cdots \cdots(x+n)}$.
11.(a) Evaluate $\int_{0.1}^{0.7}\left(e^{x}+2 x\right) d x$, by Simpson's $1 / 3^{\text {rd }}$ rule, taking $h=0.1$ and correct upto five decimal places.
(b) Evaluate $f(1.1)$ from the table below:

x	0	1	2	3	4	5
$f(x)$	0	3	8	15	24	35

