

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 4th Semester [Special] Examination, 2023

GE2-P2-MATHEMATICS

(REVISED SYLLABUS 2023)

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks.

The question paper contains MATHGE4-II, MATHGE4-III, MATHGE4-V. The candidates are required to answer any *one* from the *three* courses. Candidates should mention it clearly on the Answer Book.

MATHGE4-II

ALGEBRA

GROUP-A

1.	Answer any <i>four</i> questions:	3×4 = 12
(a)	If <i>n</i> is a positive integer, show that $\left(1+\frac{1}{n+1}\right)^{n+1} > \left(1+\frac{1}{n}\right)^n$.	3
(b)	Show that the sum of the squares of all values of $(\sqrt{3} + i)^{3/7}$ is 0.	3
(c)	Find the remainder when $1!+2!+3!+\cdots+50!$ is divided by 15.	3
(d)	Show that if d is an eigen value of a non-singular matrix A, then λ^{-1} is an eigen value of A^{-1} .	3
(e)	If α , β , γ be the roots of $x^3 + px^2 + qx + r = 0$, find the values of (i) $\sum \alpha^2 \beta$,	3
(f)	(ii) $\sum \frac{1}{\alpha\beta}$. Obtain a row echelon matrix which is row equivalent to $\begin{pmatrix} 1 & 2 & 1 & -3 \\ 2 & 4 & 3 & 1 \\ 3 & 6 & 4 & -1 \end{pmatrix}$.	3
	GROUP-B	
	Answer any <i>four</i> questions	$6 \times 4 = 24$

2. Show that
$$\tan 4\theta = \frac{4\tan\theta - 4\tan^3\theta}{1 - 6\tan^2\theta + \tan 4\theta}$$
.

3. Solve the equation $x^4 - 4x^3 - 4x^2 - 4x - 5 = 0$, whose two roots α , β satisfies 6 $2\alpha + \beta = 3$.

- 4. 6 Find the real value of λ such that the following system has a non-zero solution: $x + 2y + 3z = \lambda x$ $3x + y + 2z = \lambda y$ $2x + 3y + z = \lambda z$ 6
- 5. Find all eigen values and corresponding eigen vectors of the matrix

$$A = \begin{pmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{pmatrix}$$

- 6. Use division algorithm to prove that the square of odd integers is of the form 6 8k+1, where k is an integer.
- 8k+1, where k is an integer. Verify Cayley-Hamilton theorem for the matrix $A = \begin{pmatrix} 0 & 0 & 1 \\ 3 & 1 & 0 \\ -2 & 1 & 4 \end{pmatrix}$, and hence 6 7.

find A^{-1} .

GROUP-C

Answer any two questions	$12 \times 2 = 24$
8. (a) If $d = \gcd(a, m)$, then show that $ax \equiv ay \pmod{m}$ iff $x \equiv y \pmod{\frac{m}{d}}$.	6
(b) Solve by Ferrari's method $x^4 - 6x^2 + 16x - 15 = 0$.	6
9. (a) Prove that the product of any m consecutive integers is divisible by m .	6
(b) If R and S be equivalence relations on a set A, prove that R^{-1} is an equivalence relation on A and $R \cap S$ is also an equivalence relation on A.	6
10.(a) Obtain the fully reduced normal form of the matrix $\begin{pmatrix} 1 & 0 & 2 & 3 \\ 2 & 1 & 4 & 6 \\ 3 & 0 & 7 & 9 \\ 2 & 6 & 1 & 1 \end{pmatrix}$.	4
(b) Apply Descarte's rule of signs to find the nature of roots of $x^7 + x^5 - x^3 = 0$.	4
(c) Find two integers U and V satisfying $63U + 55V = 1$.	4
11 (c) If the metric $f_{1}^{3} + 2r^{2} + 2r + 1$, $0 = r^{2} + 2r + 1$, $0 = r^{2} + 2r + 1$, $r^{2} + + 2r +$	r

11.(a) If the roots of
$$x^3 + 2x^2 + 3x + 1 = 0$$
 are α, β, γ , then find the equation whose
roots are $\left(\frac{1}{\beta^2} + \frac{1}{\gamma^2} - \frac{1}{\alpha^2}\right), \left(\frac{1}{\gamma^2} + \frac{1}{\alpha^2} - \frac{1}{\beta^2}\right)$ and $\left(\frac{1}{\alpha^2} + \frac{1}{\beta^2} - \frac{1}{\gamma^2}\right)$.

6

6

(b) If $\cos \alpha + \cos \beta + \cos \gamma = 0 = \sin \alpha + \sin \beta + \sin \gamma$, then prove that

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = \sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = \frac{3}{2}$$

MATHGE4-III

DIFFERENTIAL EQUATION AND VECTOR CALCULUS

GROUP-A

1. Answer any *four* questions from the following:

(a) Find
$$\frac{1}{(D+1)(D+2)^2} \{e^{-2x} + e^x \cdot x + 3e^{-x}\}$$

(b) Locate and classify the singular points of equation

$$x^{2}(x^{2}-4)\frac{d^{2}y}{dx^{2}}+3x^{3}\frac{dy}{dx}+4y=0$$

(c) Show that e^{3x} , xe^{3x} and x^2e^{3x} are the solutions of $\frac{d^3y}{dx^3} - 9\frac{d^2y}{dx^2} + 27\frac{dy}{dx} - 27y = 0$. Are they linearly independent? Justify.

- (d) Find the volume of the parallelopiped whose three concurrent sides are represented by the vectors: $\hat{i} + 2\hat{j} + 3\hat{k}$, $3\hat{i} + 7\hat{j} 4\hat{k}$, $\hat{i} 5\hat{j} + 3\hat{k}$.
- (e) If ϕ is a harmonic function, show that grad ϕ is a solenoidal vector field.
- (f) If $\vec{a}, \vec{b}, \vec{c}$ be non-coplanar, prove that $\vec{a} + \vec{b}, \vec{b} + \vec{c}$ and $\vec{c} + \vec{a}$ are also noncoplanar.

GROUP-B

Answer any *four* questions from the following
$$6 \times 4 = 24$$

2. Solve:
$$\frac{dx}{dt} + 4x + 3y = t$$

$$\frac{dy}{dt} + 2x + 5y = e^t$$

3. Solve:
$$\frac{d^3y}{dx^3} - 5\frac{d^2y}{dx^2} + 8\frac{dy}{dx} - 4y = e^{2x} + e^x + 3e^{-x}$$
 6

4. Solve by method of variation of parameters
$$\frac{d^3y}{dx^3} + \frac{dy}{dx} = \csc x$$
.

5. Solve the differential equation by reducing to normal form:

$$\frac{d^2 y}{dx^2} - \frac{2}{x}\frac{dy}{dx} + \left(a^2 + \frac{2}{x^2}\right)y = 0$$

6. Show that the vector field $\vec{F} = (x^2 - yz)\hat{i} + (y^2 - zx)\hat{j} + (z^2 - xy)\hat{k}$ is irrotational. Find the scalar function $\phi(x, y, z)$ such that $\vec{\nabla}\phi = \vec{F}$.

7. Evaluate
$$\iint_{S} \vec{F} \cdot \hat{n} \, dS$$
 6

where $\vec{F} = 4xz\hat{i} - y^2\hat{j} + yz\hat{k}$ and S is the surface of the cube bounded by x = 0, x = 1; y = 0, y = 1; z = 0, z = 1.

3

6

6

 $3 \times 4 = 12$

GROUP-C

Answer any *two* questions from the following $12 \times 2 = 24$

8. (a) Solve:
$$\frac{d^2 y}{dx^2} - 5\frac{dy}{dx} + 6y = x^2 e^{3x}$$
 6

(b) Solve:
$$(5+2x)^2 \frac{d^2y}{dx^2} - 6(5+2x)\frac{dy}{dx} + 8y = 8(5+2x)^2$$
 6

9. (a) Solve by the method of undetermined coefficient $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 3y = x^3 + \sin x$. 6

(b) Find the general solution of $(1+x)\frac{d^2y}{dx^2} + x\frac{dy}{dx} - y = (1+x)^2$ by the method of 6 variation of parameters, it is given that y = x and $y = e^{-x}$ are two linearly

independent solutions of the corresponding homogeneous equation.

- 10.(a) Evaluate $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F} = xy\hat{i} + (x^2 + y^2)\hat{j}$ and *C* is the *x*-axis from x = 2 to 6 x = 4 and the straight line from y = 0 to y = 12.
 - (b) Find the work done in moving a particle in a force field 6 $\vec{F} = 3x^2\hat{i} + (2xz - y)\hat{j} + z\hat{k}$ along the line joining (0, 0, 0) to (2, 1, 3).
- 11.(a) A particle moves along a curve $x = 2t^2$, $y = t^2 4t$, z = 3t 5, where *t* is the 5 time. Find the component of its velocity and acceleration at t = 1 in direction $\vec{a} = \hat{i} 3\hat{j} + 2\hat{k}$.

(b) Solve:
$$\frac{d^2x}{dt^2} + 4x + y = te^{3t}$$
 5

$$\frac{d^2 y}{dt^2} + y - 2x = \cos^2 t$$
(c) Find $\frac{d\vec{A}}{dt} \times \frac{d^2 \vec{A}}{dt^2}$, where $\vec{A} = t^3 \hat{i} - (t^2 - 2)\hat{j} + (t^3 - t)\hat{k}$.

MATHGE4-V

NUMERICAL METHODS

GROUP-A

1. Answer any *four* questions from the following: $3 \times 4 = 12$

- (a) If $\sqrt{3}$ be represented by 1.732, find relative error and percentage error.
- (b) What is pivoting? State the sufficient condition of convergence of Gauss-Seidel iteration.
- (c) What are the merits and demerits of Lagrange's interpolation formula?

- (d) Write down the order of convergence of
 - (i) Regula-Falsi method
 - (ii) Newton-Raphson method
 - (iii) Secant method.

(e) Show that
$$\Delta \log f(x) = \log \left\{ 1 + \frac{\Delta f(x)}{f(x)} \right\}$$
.

(f) What is the geometrical meaning of Newton-Raphson method?

GROUP-B

Answer any *four* questions from the following

 $6 \times 4 = 24$

2. Using Lagrange's interpolation formula, find f(6.60) from the following data:

Ī	x	6.54	6.58	6.59	6.61	6.64
ſ	f(x)	2.8156	2.8182	2.8189	2.8202	2.8222

3. Compute the values of the unknowns in the system of equation by Gauss-Jordan's matrix inversion method:

$$2x_1 - 3x_2 + 4x_3 = 8$$

$$x_1 + x_2 + 4x_3 = 15$$

$$3x_1 + 4x_2 - x_3 = 8$$

4. Evaluate $\int_{0}^{\pi/2} \sqrt{\cos x} \, dx$ by Weddle's rule, correct upto three significant figures,

taking six intervals.

5. Establish the Picard's iteration formula for $\frac{dy}{dx} = f(x, y)$, $y(x_0) = y_0$.

6. Solve by Gauss-elimination method:

$$x+3y+2z = 5$$
$$2x-y+z = -1$$
$$x+2y+3z = 2$$

39

f(x)

85

7. For any positive k, show that $\nabla^k y_n = \sum_{i=0}^k (-1)^i \binom{k}{i} y_{n-i}$, ∇ being the backward difference operator.

GROUP-C

Answer any *two* questions from the following $12 \times 2 = 24$

233

388

8. (a) Find the number of multiplications and divison's for solving a system of *n* linear equations having *n* unknowns using Gauss-elimination method.
(b) What are partial and complete pivoting in Gauss-elimination method?
(c) Find the missing term in the following table:
3

151

40′	73S
-----	-----

_

9. (a) If f(x) is a polynomial of degree 2, prove that

$$\int_{0}^{1} f(x) dx = \frac{1}{12} [5f(0) + 8f(1) - f(2)]$$

(b) Explain modified Euler's method, for solving first order differential equation of the form 6

$$\frac{dy}{dx} = f(x, y) \quad , \quad y(x_0) = y_0$$

- 10.(a) Compute the root of the equation $2x-3\sin x-5=0$ by Regula-Falsi Method 6 correct up to three decimal places.
 - (b) Define the operator Δ , prove that $\Delta^n \left(\frac{1}{x}\right) = \frac{(-1)^n n!}{x(x+1)(x+2)\cdots(x+n)}$. 1+5
- 11.(a) Evaluate $\int_{0.1}^{0.7} (e^x + 2x) dx$, by Simpson's $1/3^{rd}$ rule, taking h = 0.1 and correct upto 6

five decimal places.

(b) Evaluate f(1.1) from the table below:

x	0	1	2	3	4	5
f(x)	0	3	8	15	24	35

-×_

6

6

UNIVERSITY OF NORTH BENGAL B.Sc. Honours 4th Semester Examination, 2023

GE2-P2-MATHEMATICS

(OLD SYLLABUS 2018)

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks.

The question paper contains MATHGE4-I, MATHGE4-II, MATHGE4-III, MATHGE4-IV & MATHGE4-V. The candidates are required to answer any *one* from the *five* courses. Candidates should mention it clearly on the Answer Book.

MATHGE4-I

CALCULUS, GEONETRY AND DIFFERENTIAL EQUATION

GROUP-A

1.	Answer any <i>four</i> questions from the following:	3×4 = 12
(a) Find the length of the curve, $x = t^2$, $y = \sin t - t \cos t$, $z = \cos t + t \sin t$ from $t = 0$	3
	to $t = \pi$.	
(b) Find the asymptotes of the curve,	3
	$x = \frac{t^2 + 1}{t^2 - 1}$, $y = \frac{t^2}{t - 1}$	
(c) Evaluate: $\lim_{x \to 0} \frac{x - \sin^{-1} x}{\sin^3 x}$	3
) Show that the distance of a point (x, y) from the origin is an invariant under rotation of axes.	3
(e) Transform the equation $x^3 = y^2(2a - x)$ into the polar equation.	3
(f) Find the order and degree of the differential equation: $\left(\frac{d^3y}{dx^3}\right)^2 = \sqrt{y + \left(\frac{dy}{dx}\right)^3}$	3
	GROUP-B	
	Answer any <i>four</i> questions from the following	$6 \times 4 = 24$

	Answer any <i>four</i> questions from the following	$6 \times 4 = 24$
2.	If $\ln y = \tan^{-1} x$, then show that	6
	$(1+x^2)y_{n+2} + (2nx+2x-1)y_{n+1} + n(n+1)y_n = 0$	
2		(

3. Show that the curve $y(x^2 + a^2) = a^2 x$ has three points of inflexion lie on the line x = 4y.

4. If
$$I_n = \int_0^1 x^n \tan^{-1} x \, dx$$
, $n > 2$, prove that $(n+1)I_n + (n-1)I_{n-2} = \frac{\pi}{2} - \frac{1}{n}$.

5. Find the volume of the solid of revolution obtained by revolving $x^{2|3} + y^{2|3} = a^{2|3}$ 6 about *x*-axis.

6. Solve the differential equation:
$$x\frac{dy}{dx} + y = y^2 \log x$$
 6

7. Reduce the equation $x^2 - 5xy + y^2 + 8x - 20y + 15 = 0$ to its canonical form and 6 show that it represents a hyperbola.

GROUP-C

Answer any *two* questions from the following $12 \times 2 = 24$

(c) Solve:
$$x^2 dy + (xy + y^2) dx = 0$$

- 9. (a) Show that the straight line $r\cos(\theta \alpha) = p$ touches the conic $\frac{l}{r} = 1 + e\cos\theta$, if $(l\cos\alpha ep)^2 + l^2\sin^2\alpha = p^2$.
 - (b) Find the equation of the sphere which passes through the points (1, 0, 0), (0, 1, 0), (0, 0, 1) and which touches the plane 2x + 2y z = 15.

10.(a) Find the equation of the cylinder, whose generators are parallel to the straight line $\frac{x}{-1} = \frac{y}{2} = \frac{z}{3}$ and whose guiding curve is $x^2 + y^2 = 9$, z = 1.

- (b) Reduce the equation $x^2 + y^2 + z^2 2xy 2yz + 2zx + x 4y + z + 1 = 0$ to its canonical form and determine the nature of the quadric. 6
- 11.(a) A circle moves with its centre on the parabola $y^2 = 4ax$ and always passes through the vertex of the parabola. Show that the envelope of the circle is the curve $x^3 + y^2(x+2a) = 0$.
 - (b) Find the asymptotes of the curve $2x^3 + 3x^2y 3xy^2 2y^3 + 3x^2 3y^2 + y 3 = 0$. 6

MATHGE4-II

ALGEBRA

GROUP-A

- (a) If *n* is a positive integer, show that $\left(1 + \frac{1}{n+1}\right)^{n+1} > \left(1 + \frac{1}{n}\right)^n$. 3
- (b) Show that the sum of the squares of all values of $(\sqrt{3} + i)^{3/7}$ is 0. 3

1.

Answer any *four* questions:

8

 $3 \times 4 = 12$

- (c) Find the remainder when $1!+2!+3!+\cdots+50!$ is divided by 15.
- (d) Show that if d is an eigen value of a non-singular matrix A, then λ^{-1} is an eigen 3 value of A^{-1} .
- (e) If α , β , γ be the roots of $x^3 + px^2 + qx + r = 0$, find the values of (i) $\sum \alpha^2 \beta$, 3 (ii) $\sum \frac{1}{\alpha \beta}$.

	(1	2	1	-3)	
(f) Obtain a row echelon matrix which is row equivalent to	2	4	3	1	3
	3	6	4	-1)	

GROUP-B

Answer any *four* questions $6 \times 4 = 24$

2. Show that
$$\tan 4\theta = \frac{4\tan\theta - 4\tan^3\theta}{1 - 6\tan^2\theta + \tan 4\theta}$$
.

- 3. Solve the equation $x^4 4x^3 4x^2 4x 5 = 0$, whose two roots α , β satisfies 6 $2\alpha + \beta = 3$.
- 4. Find the real value of λ such that the following system has a non-zero solution: 6

$$x + 2y + 3z = \lambda x$$
$$3x + y + 2z = \lambda y$$
$$2x + 3y + z = \lambda z$$

5. Find all eigen values and corresponding eigen vectors of the matrix 6

$$A = \begin{pmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{pmatrix}$$

- 6. Use division algorithm to prove that the square of odd integers is of the form $6 \\ 8k+1$, where k is an integer.
- 7. Verify Cayley-Hamilton theorem for the matrix $A = \begin{pmatrix} 0 & 0 & 1 \\ 3 & 1 & 0 \\ -2 & 1 & 4 \end{pmatrix}$, and hence 6

find A^{-1} .

GROUP-C

Answer any <i>two</i> questions	$12 \times 2 = 24$
8. (a) If $d = \gcd(a, m)$, then show that $ax \equiv ay \pmod{m}$ iff $x \equiv y \pmod{\frac{m}{d}}$.	6
(b) Solve by Ferrari's method $x^4 - 6x^2 + 16x - 15 = 0$.	6
9. (a) Prove that the product of any m consecutive integers is divisible by m .	6
(b) If R and S be equivalence relations on a set A, prove that R^{-1} is an equivalence	6

3

relation on A and $R \cap S$ is also an equivalence relation on A.

- 10.(a) Obtain the fully reduced normal form of the matrix $\begin{vmatrix} 1 & 0 & 2 & 3 \\ 2 & 1 & 4 & 6 \\ 3 & 0 & 7 & 9 \\ 2 & 6 & 1 & 1 \end{vmatrix}$.
 - (b) Apply Descarte's rule of signs to find the nature of roots of $x^7 + x^5 x^3 = 0$.
 - (c) Find two integers U and V satisfying 63U + 55V = 1.

11.(a) If the roots of $x^3 + 2x^2 + 3x + 1 = 0$ are α, β, γ , then find the equation whose $\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$

roots are
$$\left(\frac{1}{\beta^2} + \frac{1}{\gamma^2} - \frac{1}{\alpha^2}\right)$$
, $\left(\frac{1}{\gamma^2} + \frac{1}{\alpha^2} - \frac{1}{\beta^2}\right)$ and $\left(\frac{1}{\alpha^2} + \frac{1}{\beta^2} - \frac{1}{\gamma^2}\right)$.

(b) If $\cos \alpha + \cos \beta + \cos \gamma = 0 = \sin \alpha + \sin \beta + \sin \gamma$, then prove that

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = \sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = \frac{3}{2}$$

MATHGE4-III

DIFFERENTIAL EQUATION AND VECTOR CALCULUS

GROUP-A

- 1. Answer any *four* questions from the following:
 - (a) Find $\frac{1}{(D+1)(D+2)^2} \{e^{-2x} + e^x \cdot x + 3e^{-x}\}.$
 - (b) Locate and classify the singular points of equation

$$x^{2}(x^{2}-4)\frac{d^{2}y}{dx^{2}}+3x^{3}\frac{dy}{dx}+4y=0$$

- (c) Show that e^{3x} , xe^{3x} and x^2e^{3x} are the solutions of $\frac{d^3y}{dx^3} 9\frac{d^2y}{dx^2} + 27\frac{dy}{dx} 27y = 0$. Are they linearly independent? Justify.
- (d) Find the volume of the parallelopiped whose three concurrent sides are represented by the vectors: $\hat{i} + 2\hat{j} + 3\hat{k}$, $3\hat{i} + 7\hat{j} 4\hat{k}$, $\hat{i} 5\hat{j} + 3\hat{k}$.
- (e) If ϕ is a harmonic function, show that grad ϕ is a solenoidal vector field.
- (f) If $\vec{a}, \vec{b}, \vec{c}$ be non-coplanar, prove that $\vec{a} + \vec{b}, \vec{b} + \vec{c}$ and $\vec{c} + \vec{a}$ are also noncoplanar.

GROUP-B

Answer any *four* questions from the following $6 \times 4 = 24$

2. Solve:
$$\frac{dx}{dt} + 4x + 3y = t$$
$$\frac{dy}{dt} + 2x + 5y = e^{t}$$

 $3 \times 4 = 12$

4

4

4

6

3. Solve:
$$\frac{d^3y}{dx^3} - 5\frac{d^2y}{dx^2} + 8\frac{dy}{dx} - 4y = e^{2x} + e^x + 3e^{-x}$$
 6

4. Solve by method of variation of parameters
$$\frac{d^3y}{dx^3} + \frac{dy}{dx} = \operatorname{cosec} x$$
.

5. Solve the differential equation by reducing to normal form:

$$\frac{d^2 y}{dx^2} - \frac{2}{x}\frac{dy}{dx} + (a^2 + \frac{2}{x^2})y = 0$$

- 6. Show that the vector field $\vec{F} = (x^2 yz)\hat{i} + (y^2 zx)\hat{j} + (z^2 xy)\hat{k}$ is irrotational. Find the scalar function $\phi(x, y, z)$ such that $\vec{\nabla}\phi = \vec{F}$.
- 7. Evaluate $\iint_{S} \vec{F} \cdot \hat{n} \, dS$ 6

where $\vec{F} = 4xz\hat{i} - y^2\hat{j} + yz\hat{k}$ and S is the surface of the cube bounded by x = 0, x = 1; y = 0, y = 1; z = 0, z = 1.

GROUP-C Answer any *two* questions from the following

8. (a) Solve:
$$\frac{d^2 y}{dx^2} - 5\frac{dy}{dx} + 6y = x^2 e^{3x}$$
 6

(b) Solve:
$$(5+2x)^2 \frac{d^2y}{dx^2} - 6(5+2x)\frac{dy}{dx} + 8y = 8(5+2x)^2$$
 6

- 9. (a) Solve by the method of undetermined coefficient $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + 3y = x^3 + \sin x$. 6
 - (b) Find the general solution of $(1+x)\frac{d^2y}{dx^2} + x\frac{dy}{dx} y = (1+x)^2$ by the method of variation of parameters, it is given that y = x and $y = e^{-x}$ are two linearly independent solutions of the corresponding homogeneous equation.
- 10.(a) Evaluate $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F} = xy\hat{i} + (x^2 + y^2)\hat{j}$ and C is the x-axis from x = 2 to 6 x = 4 and the straight line from y = 0 to y = 12.
 - (b) Find the work done in moving a particle in a force field 6 $\vec{F} = 3x^2\hat{i} + (2xz - y)\hat{j} + z\hat{k}$ along the line joining (0, 0, 0) to (2, 1, 3).
- 11.(a) A particle moves along a curve $x = 2t^2$, $y = t^2 4t$, z = 3t 5, where *t* is the 5 time. Find the component of its velocity and acceleration at t = 1 in direction $\vec{a} = \hat{i} 3\hat{j} + 2\hat{k}$.

6

 $12 \times 2 = 24$

(b) Solve:
$$\frac{d^{2}x}{dt^{2}} + 4x + y = te^{3t}$$

$$\frac{d^{2}y}{dt^{2}} + y - 2x = \cos^{2} t$$
(c) Find $\frac{d\vec{A}}{dt} \times \frac{d^{2}\vec{A}}{dt^{2}}$, where $\vec{A} = t^{3}\hat{i} - (t^{2} - 2)\hat{j} + (t^{3} - t)\hat{k}$.

GROUP THEORY

GROUP-A

Answer any *four* questions from the following $3 \times 4 = 12$

3

3

3

3

- 1. Prove that in a group $G, (ab)^{-1} = b^{-1}a^{-1}$ for all $a, b \in G$.
- 2. Show that the set $S = \{e, \rho_1, \rho_2, \rho_3\}$ of permutations forms an abelian group with respect to 'multiplication of permutations', where

$$e = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \quad \rho_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix}, \quad \rho_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix}, \quad \rho_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$

- 3. Find all elements of order 10 in the group $(\mathbb{Z}_{30}, +_{30})$.
- 4. Let G be a group and H, K be subgroups of G. Then show that $H \cap K$ is a 3 subgroup of G.
- 5. Find all cyclic subgroups of the group $V = \{e, a, b, c\}$, where V is the Klein's 3 4-group.
- 6. Let $\mathbb{R}^{\hat{+}}$ be the group of positive real numbers under multiplication and \mathbb{R} the group of all real numbers under addition. Then show that the map $\theta \colon \mathbb{R}^{+} \to \mathbb{R}$ such that $\theta(x) = \log_{e} x$ is an isomorphism.

GROUP-B

	Answer any <i>four</i> questions from the following	$6 \times 4 = 24$
7	Let G be a group and H be a subgroup of G . Prove that any two left cosets of H in G are either identical or they have no common element.	6
8	. Prove that every group of prime order is cyclic.	6
9	Let <i>H</i> be a subgroup of a group <i>G</i> . Prove that the relation ρ defined on <i>G</i> by " $a\rho b$ if and only if $a^{-1}b \in H$ " for $a, b \in G$ is an equivalence relation on <i>G</i> .	6
1	0. Prove that a subgroup H of a group G is normal in G if and only if $g^{-1}hg \in H$ for all $h \in H$, $g \in G$.	6
1	1. Prove that a group homomorphism $f: G \to G'$ is one-one if and only if $\ker f = \{e\}$.	6
1	2. Let $f: G \to G'$ be a group homomorphism. Let $a \in G$ be such that $O(a) = n$	6

and O(f(a)) = m. Prove that O(f(a)) | O(a) and f is one-one iff m = n.

GROUP-C

	Answer any two questions from the following	$12 \times 2 = 24$
13.(a)	Prove that a finite group of order <i>n</i> is cyclic if and only if there exists an element <i>b</i> in <i>G</i> such that $O(b) = n$.	6
(b)	Let $G = \{1, \omega, \omega^2, -1, -\omega, -\omega^2\}$ where $\omega = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}$. Prove that G is a	6
	cyclic group under multiplication.	
14.(a)	Define centre of a group G. Prove that the centre $Z(G)$ of a group G is a normal subgroup of G.	6
(b)	Let G and G' be two groups and $\phi: G \to G'$ be a homomorphism. Prove that $\phi(G)$ is a subgroup of G'.	6
15.(a)	Let <i>H</i> and <i>K</i> be subgroups of a group <i>G</i> . Then show that <i>HK</i> is a subgroup of <i>G</i> if and only if $HK = KH$.	6
(b)	Prove that a finite semigroup in which cancellation laws hold is a group.	6
16.(a)	If H and K are finite subgroups of a group G , then show that	7
	$O(HK) = \frac{O(H)O(K)}{O(H \cap K)}$	
(b)	Find all subgroups of the group \mathbb{Z} of integers.	5

MATHGE4-V

NUMERICAL METHODS

GROUP-A

1.	Answer any <i>four</i> questions from the following:	$3 \times 4 = 12$
	_	

- (a) If $\sqrt{3}$ be represented by 1.732, find relative error and percentage error.
- (b) What is pivoting? State the sufficient condition of convergence of Gauss-Seidel iteration.
- (c) What are the merits and demerits of Lagrange's interpolation formula?
- (d) Write down the order of convergence of
 - (i) Regula-Falsi method
 - (ii) Newton-Raphson method
 - (iii) Secant method.

(e) Show that
$$\Delta \log f(x) = \log \left\{ 1 + \frac{\Delta f(x)}{f(x)} \right\}$$
.

(f) What is the geometrical meaning of Newton-Raphson method?

GROUP-B

Answer any *four* questions from the following

 $6 \times 4 = 24$

2. Using Lagrange's interpolation formula, find f(6.60) from the following data:

x	6.54	6.58	6.59	6.61	6.64
f(x)	2.8156	2.8182	2.8189	2.8202	2.8222

3. Compute the values of the unknowns in the system of equation by Gauss-Jordan's matrix inversion method:

$$2x_1 - 3x_2 + 4x_3 = 8$$

$$x_1 + x_2 + 4x_3 = 15$$

$$3x_1 + 4x_2 - x_3 = 8$$

4. Evaluate $\int_{0}^{\pi/2} \sqrt{\cos x} \, dx$ by Weddle's rule, correct upto three significant figures, taking six intervals.

taking six intervals.

- 5. Establish the Picard's iteration formula for $\frac{dy}{dx} = f(x, y)$, $y(x_0) = y_0$.
- 6. Solve by Gauss-elimination method:

$$x+3y+2z = 5$$
$$2x-y+z = -1$$
$$x+2y+3z = 2$$

7. For any positive k, show that $\nabla^k y_n = \sum_{i=0}^k (-1)^i \binom{k}{i} y_{n-i}$, ∇ being the backward difference operator.

GROUP-C

Answer any <i>two</i> questions from the following	$12^{2} - 24$
8. (a) Find the number of multiplications and divison's for solving a system of n lines	ar 6

- equations having *n* unknowns using Gauss-elimination method.
- (b) What are partial and complete pivoting in Gauss-elimination method?
- (c) Find the missing term in the following table:

x	16	18	20	22	24	26
f(x)	39	85	-	151	233	388

9. (a) If f(x) is a polynomial of degree 2, prove that

$$\int_{0}^{1} f(x) dx = \frac{1}{12} [5f(0) + 8f(1) - f(2)]$$

(b) Explain modified Euler's method, for solving first order differential equation of the form

$$\frac{dy}{dx} = f(x, y) \quad , \quad y(x_0) = y_0$$

6

6

3

 $12 \times 2 = 24$

10.(a) Compute the root of the equation $2x-3\sin x-5=0$ by Regula-Falsi Method correct up to three decimal places.

(b) Define the operator
$$\Delta$$
, prove that $\Delta^n \left(\frac{1}{x}\right) = \frac{(-1)^n n!}{x(x+1)(x+2)\cdots(x+n)}$. 1+5

11.(a) Evaluate $\int_{0.1}^{0.7} (e^x + 2x) dx$, by Simpson's $1/3^{rd}$ rule, taking h = 0.1 and correct upto

five decimal places.

(b) Evaluate f(1.1) from the table below:

x	0	1	2	3	4	5
f(x)	0	3	8	15	24	35

×

6

6